Thursday, December 3, 2009

Questions

  1. A rectangle is to have a perimeter 26cm and a length x cm. If the width x equals 3cm, find the length and hence the Area of the rectangle. Find dA/dx and hence find the width of the rectangle giving the maximum area.
  2. Solve for p and r given 3p + 2r = 7 and p^2 - 2r = 11
  3. Solve 8x^2 + 3y^2 = 50 and 2x + y = 5
  4. Write the expression 9x^2 - 9x + 1 in the form a(x + b)^2 + c, where a,b and c are constants. Hence state whether the function y = 9x^2 - 9x + 1 has a maximun or minimum value. State the value of x at which this maximum or minimum value occurs
  5. EFGH is a parallelogram with EF = 6cm EH = 4.2cm, and angle FEH = 70 degrees. Calculate the length of HF. Calculate the area of the parallelogram EFGH.
  6. A vertical tover FT has a vertical antenna TW mounted on top of the tower. A point P is on the same horizontal ground as F such that PF = 28 m and the angle of elevation of T and W from P are 40 and 54 resp. Calculate the length of the antenna TW.
  7. A vertical pole AD and a vertical tower BC stands on horizontal ground XABY. The height of the pole is 2.5 m and the angle of depressionn of B from D is 15 degrees abd the angle of elevation of C from D is 20 degrees. DE is a horizontal line. Calculate AB and the height of the tower BC.
  8. Find the coordinates of the stationary points on the graph of y = x^3 - 12 x - 12.
  9. Factorise x^2 + x -12
  10. Evaluate (5x^2 + 4x + 1) + (-7x + 2)
  11. Factorise 5x^2 + 13x - 6
  12. Simplify (8x^4 - 2x^2)/2x^2
  13. Factorise 3x^2 - 48
  14. KNM is a right angle triangle with KNL also being a right angle triangle. AN = 6 cm and NM = 15.6 cm and angle KLN is 52 degrees. KLM is a straight line. Calculate the size of angle KMN and the length LM
  15. F(x) = 3x^2 - 12x + 5. Write in the form a(x + b)^2 + c, where a,b and c are constants. Hence determine the minimum value of f(x) and the coordinates of the minimum point.
  16. y = 6x^2 + 32/x^3, find dy/dx
  17. y = x^2 + 54/x, find dy/dx
  18. y = 1 + 4x^3, find dy/dx
  19. Find the coordinates of the stationary points on the graph of y = x^2 + x^3.
  20. The curve y = 27 - x^2 has the points P and S on the curve. The point R and Q lie on the x-axis and PQRS is a rectangle. The length of OQ is t units. Find the length of PQ in terms of t and show the area of PQRS is A = 54t - 2t^3. Find the value of t for which A has a stationary value. What is the stationary value of A and determine its nature (max or min)

197 comments:

  1. QUESTION 1

    well if the perimeter = 26
    2L + 2W = 26
    BUT W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm

    ReplyDelete
  2. QUESTION 1 CONTD

    AREA = L x W = 10 x 3=30cm^2

    ReplyDelete
  3. 5) e^2=h^2+f^2-2hfcosx
    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70
    e^2=36+17.64-50.4(0.34)
    e^2=53.64-17.136
    e=squar root of 36.504
    e=6.04
    i.e the length of HF = 6.04

    ReplyDelete
  4. The area of a parallelogram = base * hight
    there is no perpendicular hight so area can not be calculated

    ReplyDelete
  5. 6)Triangle 1 (PWF)
    tan tata=opp/adj
    i.e opp=adj tan tata
    opp=28 tan54
    opp=28(1.38)
    opp=38.64
    i.e FW=38.64

    ReplyDelete
  6. 6)Triangle 2 (PTF)
    tan tata=opp/adj
    i.e opp=adj tan tata
    opp=28 tan40
    opp=28(0.84)
    opp=23.52
    i.e FT=23.52

    ReplyDelete
  7. 6)i.e TW=FW-FT
    TW=38.64-23.52
    TW=15.12

    ReplyDelete
  8. 7)Triangle (ABD)
    tan tata=opp/adj
    i.e opp=adj tan tata
    opp=2.5 tan75
    opp=2.5(3.73)
    opp=8.4
    i.e AB=8.4

    ReplyDelete
  9. This comment has been removed by the author.

    ReplyDelete
  10. 7)Triangle (CDE)
    tan tata=opp/adj
    i.e opp=adj tan tata
    opp=8.4 tan20
    opp=8.4(0.36)
    opp=3.0
    i.e EC=3.0

    ReplyDelete
  11. y=x^3-12x-12
    using loop
    dy/dx=3x^2-12
    for stationary point dy/dx=o
    i.e 3x^2-12=0
    3x^2=12
    x^2=12/3
    x^2=4
    i.e x=squar root of 4
    x=+or-2

    ReplyDelete
  12. d^2y/dx^2=3x^2-12
    using loop

    d^2y/dx^2=6x
    d^2y/dx^2=6/x

    sub when x=2
    d^2y/dx^2=6/2
    =3

    sub when x=-2
    d^2y/dx^2=6/-2
    =-3

    ReplyDelete
  13. (9) x^2 + x -12
    x^2 + 4x -3x -12
    x(x + 4)-3(x +4)
    (x+ 4)(x-3)

    ReplyDelete
  14. (8) (5x^2 + 4x + 1) + (-7x + 2)
    5x^2 + 4x + 1 -7x + 2
    5x^2 - 3x + 3

    ReplyDelete
  15. Number 1

    given that width=3 and perimeter=26, therefore:
    P=2L+2W
    26=2L+2(3)
    26=2L+6
    26-6=2L
    2L=20
    L=20/2
    L=10

    ReplyDelete
  16. Number 1 (ii)

    the area:
    A=L*W
    A=10*3
    A=30cm^2

    ReplyDelete
  17. for part one of number one i forgot the units which is "cm". i don't want to delete and then type over. sorry.

    ReplyDelete
  18. Question 2

    if i'm wrong please correct this question

    solve for p
    3p+2r=7
    3p=7-2r
    3p/3=7-2r/3
    p=7-2r/3

    solve for r
    3p+2r=7
    -2r=3p-7
    -2r/-2=3p-7/-2

    solve for p
    p^2-2r=11
    p^2=11+2r
    p=11+2r^-2

    solve for r
    p^2-2r=11
    2r=p^2-11
    2r/2=p^2-11/2
    r=p^2-11/2

    ReplyDelete
  19. For Ouestion no.5, how to find the area of a parellelogram and the diagonal side of HF?

    ReplyDelete
  20. Question 9

    x^2+x-12
    x^2-3x+4x-12
    (x^2-3x)(+4x-12)
    x(x-3)+4(x-3)
    (x-3)(x+4)

    ReplyDelete
  21. Question 11

    5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  22. Perimeter=2L + 2b
    =2L + 2(x)
    x=3 -->
    26=2l + 2(3)
    2L=26 - 6
    L=20/2
    L=10 cm

    ReplyDelete
  23. In finding L.....
    L=10cm
    b= 3cm
    Area = L*b
    = 10*3
    = 30 cm^2

    ReplyDelete
  24. perimeter=26cm
    l=xcm
    b=3cm
    perimeter of rectangle=2L+2b
    26=2L+2(3)
    26-6=2L
    20=2L
    hence L=10cm

    ReplyDelete
  25. area of perimeter=L*b

    3*10=30cm^2

    ReplyDelete
  26. e^2=h^2+f^2-2hfcosx

    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70

    e^2=36+17.64-50.4(0.34)

    e^2=53.64-17.136

    e=squar root of 36.504
    e=6.04

    length of HF = 6.04

    ReplyDelete
  27. 9)x^2+x-12
    x^2-3x+4x-12
    (x^2-3x)(+4x-12)
    x(x-3)+4(x-3)
    (x-3)(x+4)

    ReplyDelete
  28. 7)

    Triangle (CDE)

    tan tata=opp/adj

    opp=adj tan tata
    opp=8.4 tan20
    opp=8.4(0.36)
    opp=3.0

    hence EC=3.0

    ReplyDelete
  29. 6


    Triangle 1 (PWF)
    tan tata=opp/adj

    hence opp=adj tan tata
    opp=28 tan54
    opp=28(1.38)
    opp=38.64
    i.e FW=38.64

    ReplyDelete
  30. This comment has been removed by the author.

    ReplyDelete
  31. This comment has been removed by the author.

    ReplyDelete
  32. 2L + 2W = 26
    W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm
    area = L x W = 10 x 3=30cm^2

    ReplyDelete
  33. e^2=h^2+f^2-2hfcosx

    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70

    e^2=36+17.64-50.4(0.34)

    e^2=53.64-17.136

    e=square root of 36.504
    e=6.04

    length of HF = 6.04

    ReplyDelete
  34. 7)Triangle (ABD)
    tan tayta=opp/adj
    i.e opp=adj tan tayta
    opp=2.5 tan75
    opp=2.5(3.73)
    opp=8.4
    i.e AB=8.4

    ReplyDelete
  35. 5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ^^question #11

    ReplyDelete
  36. 1. 2L + 2W = 26
    2L + 2(3) = 26
    2L = 26 -6
    2L = 20
    therefore, L = 20/2
    L =10 cm

    ReplyDelete
  37. area = L * W
    area = 20* 3
    area = 30cm^2

    ReplyDelete
  38. P = 26 cm
    L = x cm
    W = 3 cm

    P = 2L + 2B or (L + B)*2

    26 = 2x + 2*(3)
    26 = 2x + 6
    26 - 6 = 2x
    2x = 20
    x = 10cm

    therefore since L = x
    L = 10cm

    ReplyDelete
  39. 1 cont...
    A = L * B
    A = 10 * 3
    A = 30cm^2

    A = L * B
    A = x * 3Aa = 3x

    dA/dx = 3

    ReplyDelete
  40. 2. 3p + 2r = 7_______1
    p^2 - 2r = 11_____2

    eq1+eq2: 3p + p^2 + 2r + - 2r = 18

    3p + p^2 = 18
    p^2 + 3p - 18 = 0
    p^2 + 6p - 3p - 18 = 0
    p(p + 6) - 3(p + 6) = 0
    (p + 6)(p - 3) = 0
    p + 6 = 0 p - 3 = 0
    p = -6 p = 3

    subst values for p into equation 1:

    3p + 2r = 7
    3(-6) + 2r = 7
    -18 + 2r = 7
    2r = 25
    r = 12.5

    3p + 2r = 7
    3(3) + 2r = 7
    9 + 2r = 7
    2r = -2
    r = -1

    so corresponding values are:

    (p= -6,r=12.5) (p=3,r= -1)

    ReplyDelete
  41. 3. 8x^2 + 3y^2 = 50___1
    2x + y = 5____________2

    2: 2x + y = 5
    y = 5 - 2x____________3

    subst eq3 into eq1 : 8x^2 + 3(5 - 2x)^2 = 50
    8x^2 + 3(25 - 20x + 4x^2) = 50
    8x^2 + 75 - 60x + 12x^2 = 50
    20x^2 - 60x + 75 - 50 = 0
    20x^2 - 60x + 25 = 0
    /5: 4x^2 - 12x + 5 = 0
    4x^2 - 2x - 10x + 5 = 0
    2x(2x - 1) - 5 (2x - 1) = 0
    (2x - 1) (2x - 5) = 0
    2x - 1 = 0 2x - 5 = 0
    2x = 1 2x = 5
    x = 1/2 x = 5/2

    subst x values into eqn 2
    2x + y = 5
    2(1/2) + y = 5
    1 + y = 5
    y = 4

    2x + y = 5
    2(5/2) + y = 5
    5 + y = 5
    y = 0

    (x = 1/2,y = 4) (x = 5/2,y = 0)

    ReplyDelete
  42. 4. 9x^2 - 9x + 1 = 0
    9x^2 - 9x = -1
    /9: x^2 - x = -1/9
    add half square of the term in x, i.e. half the square coefficient of x:
    x^2 - x + (-1/2)^2 = -1/9 + (-1/2)^2
    (x - 1/2)^2 = 5/36
    (x - 1/2)^2 - 5/36 = 0

    since we previously divided by 9 we must now multiply by 9 to bring back the equation to the original form

    x9: 9 [(x - 1/2)^2 - 5/36 = 0]
    9(x - 1/2)^2 - 5/4 = 0
    the equation is now in the form of a(x + b)^2 + c

    since c = -5/4, it is a min value

    9(x - 1/2)^2 = 5/4
    (x - 1/2)^2 = 5/36
    (x - 1/2) = +√5/36 or -√5/36
    x - 1/2 = √5/36 or x - 1/2 = -√5/36
    x = √5/36 + 1/2 or x = -√5/36 + 1/2

    It's best to leave the x-values in this form since they are more accurate than decimals.

    ReplyDelete
  43. if the perimeter = 26
    2L + 2W = 26
    BUT W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm

    ReplyDelete
  44. area therefore = L x W = 10 x 3
    =30cm^2

    ReplyDelete
  45. 11.5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  46. 1)
    width (W)=3
    perimeter (p)=26

    P=2L+2W
    26=2L+2(3)
    26=2L+6
    26-6=2L
    2L=20
    L=20/2
    L=10

    ReplyDelete
  47. 1)ii)

    L=10cm
    b= 3cm
    therefore:
    Area = Lxb
    = 10x3
    = 30 cm^2

    ReplyDelete
  48. 2)3p+2r=7
    p^2-2r=11
    using elimination method
    3p-p^2=-4
    -p^2+3p+4=0 *-1
    p^2-3p-4=0
    p^2-4p+p-4=0
    p(p-4)+1(p-4)=0
    (p-4)(p+1)=0
    p=4 , p=-1

    subs.p into 3p+2r=7
    p=4
    3(4)+2r=7
    2r=-5
    r=-5/2
    p=-1
    3(-1)+2r=7
    2r=10
    r=5

    ReplyDelete
  49. 2)

    3p + 2r = 7.........eq1
    p^2 - 2r = 11.......eq2

    eq1 + eq2

    3p + p^2 + 2r + - 2r = 18
    3p + p^2 = 18
    p^2 + 3p - 18 = 0
    p^2 + 6p - 3p - 18 = 0
    p(p + 6) - 3(p + 6) = 0
    (p + 6)(p - 3) = 0
    p + 6 = 0 p - 3 = 0
    p = -6 p = 3

    substitute p values into eq1:

    3p + 2r = 7
    3(-6) + 2r = 7
    -18 + 2r = 7
    2r = 25
    r = 12.5

    3p + 2r = 7
    3(3) + 2r = 7
    9 + 2r = 7
    2r = -2
    r = -1


    (p= -6,r=12.5)and when(p=3,r= -1)

    ReplyDelete
  50. 3)
    8x^2+3y^2=50
    2x+y=5

    y=5-2x subs.into 8x^2+3y^2=50
    8x^2+3(4x^2-20x+25)=50
    20x^2-60x+25=0/5
    4x^2-12x+5=0
    4x^2-2x-10x+5=0
    2x(2x-1)-5(2x-1)=0
    (2x-1)(2x-5)=0
    x=1/2 , x=5/2
    subs. x into 2x+y=5

    2(1/2)+y=5
    y=4
    and
    2(5/2)+y=5
    y=0

    ReplyDelete
  51. 3)
    8x^2 + 3y^2 = 50....eq1
    2x + y = 5..........eq2

    make y subject of the formula:
    2x + y = 5
    y = 5 - 2x..........eq3


    substitute eq3 in eq1
    8x^2 + 3(5 - 2x)^2 = 50
    8x^2 + 3(25 - 20x + 4x^2) = 50
    8x^2 + 75 - 60x + 12x^2 = 50
    20x^2 - 60x + 75 - 50 = 0
    20x^2 - 60x + 25 = 0

    divide by (5)

    4x^2 - 12x + 5 = 0
    4x^2 - 2x - 10x + 5 = 0
    2x(2x - 1) - 5 (2x - 1) = 0
    (2x - 1) (2x - 5) = 0
    2x - 1 = 0 2x - 5 = 0
    2x = 1 2x = 5
    x = 1/2 x = 5/2

    substitute x values into eq2
    2x + y = 5
    2(1/2) + y = 5
    1 + y = 5
    y = 4

    2x + y = 5
    2(5/2) + y = 5
    5 + y = 5
    y = 0

    (x = 1/2,y = 4) and when
    (x = 5/2,y = 0)

    ReplyDelete
  52. 9)
    x^2+x-12
    x^2+4x-3x-12
    x(x+4)-3(x+4)
    (x+4)(x=-3)

    ReplyDelete
  53. 10)
    5x^2+4x+1+(-7x+2)
    5x^2+4x+1-7x+2
    5x^2-3x+3

    ReplyDelete
  54. 9)

    x^2+x-12
    x^2-3x+4x-12
    (x^2-3x)(+4x-12)
    x(x-3)+4(x-3)
    (x-3)(x+4)

    ReplyDelete
  55. 11)
    5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (5x-2) (x+3)

    ReplyDelete
  56. #1:
    Perimeter = (L+B) X 2
    26 = (L+B)2
    26= (x+3)2
    13 = x + 3
    Therefore length, x, = 10cm
    •Area of rectangle: (L x B)
    = 10 x 3
    = 30cm²
    •dA/dx:
    2(L+W) =26
    L + W = 13
    W= 13 –x
    Therefore since length = x, and width = (13 – x),
    Area= LxB
    = (x) (13-x)
    = 13x - x²
    Therefore dA/dx = 13-2x
    •Therefore width of rectangle= 13- 2x
    13 = 2x
    6.5cm = x
    •Therefore maximum area of rectangle = L x B
    = 10cm x 6.5cm
    = 65cm²

    ReplyDelete
  57. #2:
    3p + 2r = 7……..equation1
    p² - 2r = 11…….equation2
    using equation1, make r subject: therefore ([7-3p]/2 )= r
    p² - 2([7-3p]/2) = 11
    p² - (7-3p) = 11
    p² - 7 +3p = 11
    p² + 3p – 18 = 0
    p² - 3p + 6p – 18 =0
    after factorizing: (p + 6) (p -3) = 0
    therefore values of p= -6 and 3
    when p=-6, from equation 1:
    3 (-6) +2r =7
    2r = 25
    r = 12.5
    when p = 3, using equation1:
    3 (3)+2r = 7
    2r = -2
    r = -1

    ReplyDelete
  58. #3:
    8x² +3y² = 50…..equation1
    2x + y = 5………..equation2
    Using equation 2, y = 5-2x
    Therefore, 8x² + 3 (5-2x)² = 50
    8x² + 75 – 60x +12x² = 50
    20x² – 60x +25 = 0……………divide equation by 5.
    4x² – 12x + 5 = 0
    4x² – 2x – 10x +5 =0
    After factorizing, (2x-1) (2x-5) =0
    Therefore x = 0.5 and 2.5
    Substitute x= 0.5 into equation 2….
    2(0.5) + y = 5
    1 + y = 5
    •Therefore when x=0.5, y=4
    Substitute x=2.5 into equation 2…….
    2(2.5) +y = 5
    5 + y = 5
    •Therefore when x= 2.5, y=0.

    ReplyDelete
  59. #4:
    •9x² - 9x +1 in the form a(x + b)² +c:
    9x² – 9x +1 = 0
    9x² - 9x = -1
    x² - [9x/9] = -[1/9]
    x² - 1x + 0.25 = - [1/9] + 0.25
    (x – 0.5)² = 5/36
    Therefore: a=1, b= -0.5, c= -[5/36]
    •maximum or minimum value:
    Since the value of “a” = 1, which is positive, then the function has minimum value.
    •The value at x, which this minimum value occurs = 0.5

    ReplyDelete
  60. #9:
    X² + x – 12
    X² – 3x + 4x – 12
    X(x-3) + 4 (x-3)
    (x+4) (x-3)

    ReplyDelete
  61. #15:
    F(x) = 3x² -12x +5
    3x² -12x = -5
    x² - 4x = -5
    x² -4x = - 5/3
    x² - 4x + 4 = -5/3 +4
    (x-2)² = 7/3
    In the form a(x+b)² +c : (x-2)² - 7/3, where a= 1, b= -2 and c= -7/3
    The function has a minmum value.
    Coordinates at which this occurs = (2, -7/3)

    ReplyDelete
  62. Perimeter=2(l+w)
    26=2(L+W)

    where W=3CM
    SO;
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm

    ReplyDelete
  63. Area of rectangle= b X h
    =10X3
    =30CM^2

    ReplyDelete
  64. 3p + 2r = 7......(1)
    p^2 - 2r = 11......(2)
    From (1),([7-3p]/2 )= r
    p^2 - 2([7-3p]/2) = 11
    p^2 - (7-3p) = 11
    p^2 - 7 +3p = 11
    p^2 + 3p – 18 = 0
    p^2 - 3p + 6p – 18 =0
    (p + 6) (p -3) = 0
    p= -6 & p= 3
    when p=-6, from (1):
    3 (-6) +2r =7
    2r = 25
    r = 12.5
    when p = 3, using(1):
    3 (3)+2r = 7
    2r = -2
    r = -1

    ReplyDelete
  65. 3. 8x^2 + 3y^2 = 50......(1)
    2x + y = 5......(2)

    From (2)
    2x + y = 5
    y = 5 - 2x......(3)

    sub (3) into (1)
    8x^2 + 3(5 - 2x)^2 = 50
    8x^2 + 3(25 - 20x + 4x^2) = 50
    8x^2 + 75 - 60x + 12x^2 = 50
    20x^2 - 60x + 75 - 50 = 0
    20x^2 - 60x + 25 = 0
    /5: 4x^2 - 12x + 5 = 0
    4x^2 - 2x - 10x + 5 = 0
    2x(2x - 1) - 5 (2x - 1) = 0
    (2x - 1) (2x - 5) = 0
    2x - 1 = 0 2x - 5 = 0
    2x = 1 2x = 5
    x = 1/2 x = 5/2

    sub x into (2)
    2x + y = 5
    2(1/2) + y = 5
    1 + y = 5
    y = 4

    2x + y = 5
    2(5/2) + y = 5
    5 + y = 5
    y = 0

    x = 1/2
    y = 4
    x = 5/2
    y = 0

    ReplyDelete
  66. 9x² - 9x +1 in the form a(x + b)² +c:
    9x² – 9x +1 = 0
    9x² - 9x = -1
    x² - [9x/9] = -[1/9]
    x² - 1x + 0.25 = - [1/9] + 0.25
    (x – 0.5)² = 5/36
    a=1, b= -0.5, c= -[5/36]

    ReplyDelete
  67. ....maximum or minimum value:
    Since the value of “a” = 1, which is positive, then the function has minimum value.

    ReplyDelete
  68. ....value at x, which this minimum value occurs = 0.5

    ReplyDelete
  69. Number 5.....

    e^2=h^2+f^2-2hfcosx
    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70
    e^2=36+17.64-50.4(0.34)
    e^2=53.64-17.136
    e=squar root of 36.504
    e=6.04
    the length of HF = 6.04

    ReplyDelete
  70. Number 6.....
    Triangle 1 (PWF)
    tan=opp/adj
    .....opp=adj tan tata
    opp=28 tan54
    opp=28(1.38)
    opp=38.64
    .....FW=38.64

    ReplyDelete
  71. Triangle 2 (PTF)
    tan=opp/adj
    ...opp=adj tan tata
    opp=28 tan40
    opp=28(0.84)
    opp=23.52
    ....FT=23.52

    ReplyDelete
  72. In Conclusion....

    if.... TW=FW-FT
    Then;
    TW=38.64-23.52
    TW=15.12

    ReplyDelete
  73. Number 9....

    x^2+x-12
    x^2+4x-3x-12
    x(x+4)-3(x+4)
    (x+4)(x=-3)

    ReplyDelete
  74. Number 10....

    5x^2+4x+1+(-7x+2)
    5x^2+4x+1-7x+2
    5x^2-3x+3

    ReplyDelete
  75. Number 11......

    5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  76. Number 1

    given that width=3 and perimeter=26, therefore:
    P=2L+2W
    26=2L+2(3)
    26=2L+6
    26-6=2L
    2L=20
    L=20/2
    L=10

    (ii)

    the area:
    A=L*W
    A=10*3
    A=30cm^2

    ReplyDelete
  77. question 9

    x^2+x-12
    (x-3)(x+4)

    ReplyDelete
  78. question 10

    (5x^2+4x+1)+(-7x+2)
    5x^2+4x+1-7x+2
    5x^2+4x-7x+1+2
    5x^2-3x+3

    ReplyDelete
  79. question 11

    5x^2+13x-6
    (5x-2)(x+3)

    ReplyDelete
  80. question 12

    (8x^4-2x^2)/2x^2

    8x^4/2x^2 - 2x^2/2x^2

    4x^2-0

    4x^2

    ReplyDelete
  81. question 13

    3x^2-48

    divide by 3

    x^2-16
    (x+4)(x-4) difference of two squares

    ReplyDelete
  82. question 16

    y=6x^2+32/x^3

    y=6x^2+32x^-3

    dy/dx=12x-96x^-4

    =12x-96/x^4

    ReplyDelete
  83. question 17

    y=x^2+54/x

    y=x^2+54x^-1

    dy/dx=2x-54x^-2

    =2x-54/x^2

    ReplyDelete
  84. question 18

    y=1+4x^3

    dy/dx=12x^2

    ReplyDelete
  85. question 19

    y=x^2+x^3

    dy/dx=2x+3x^2

    for stationary points

    dy/dx=0

    3x^2+2x=0

    x(3x+2)=0

    x=0

    3x+2=0
    3x=-2
    x=-2/3

    subt. x=0 and x=-2/3 into y=x^2+x^3

    y=(0)^2+(0)^3
    y=0

    y=(-2/3)^2+(-2/3)^3
    =4/9-8/27
    =4/27

    frist stationary point (0,0)
    second stationary point (-2/3,4/27)

    ReplyDelete
  86. Number 5.....

    e^2=h^2+f^2-2hfcosx
    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70
    e^2=36+17.64-50.4(0.34)
    e^2=53.64-17.136
    e=squar root of 36.504
    e=6.04
    the length of HF = 6.04

    ReplyDelete
  87. 2)

    3p + 2r = 7.........eq1
    p^2 - 2r = 11.......eq2

    eq1 + eq2

    3p + p^2 + 2r + - 2r = 18
    3p + p^2 = 18
    p^2 + 3p - 18 = 0
    p^2 + 6p - 3p - 18 = 0
    p(p + 6) - 3(p + 6) = 0
    (p + 6)(p - 3) = 0
    p + 6 = 0 p - 3 = 0
    p = -6 p = 3

    substitute p values into eq1:

    3p + 2r = 7
    3(-6) + 2r = 7
    -18 + 2r = 7
    2r = 25
    r = 12.5

    3p + 2r = 7
    3(3) + 2r = 7
    9 + 2r = 7
    2r = -2
    r = -1


    (p= -6,r=12.5)and when(p=3,r= -1)

    ReplyDelete
  88. 3. 8x^2 + 3y^2 = 50......(1)
    2x + y = 5......(2)

    From (2)
    2x + y = 5
    y = 5 - 2x......(3)

    sub (3) into (1)
    8x^2 + 3(5 - 2x)^2 = 50
    8x^2 + 3(25 - 20x + 4x^2) = 50
    8x^2 + 75 - 60x + 12x^2 = 50
    20x^2 - 60x + 75 - 50 = 0
    20x^2 - 60x + 25 = 0
    /5: 4x^2 - 12x + 5 = 0
    4x^2 - 2x - 10x + 5 = 0
    2x(2x - 1) - 5 (2x - 1) = 0
    (2x - 1) (2x - 5) = 0
    2x - 1 = 0 2x - 5 = 0
    2x = 1 2x = 5
    x = 1/2 x = 5/2

    sub x into (2)
    2x + y = 5
    2(1/2) + y = 5
    1 + y = 5
    y = 4

    2x + y = 5
    2(5/2) + y = 5
    5 + y = 5
    y = 0

    x = 1/2
    y = 4
    x = 5/2
    y = 0

    ReplyDelete
  89. question 12

    (8x^4-2x^2)/2x^2

    8x^4/2x^2 - 2x^2/2x^2

    4x^2-0

    4x^2

    ReplyDelete
  90. Number 1 (ii)

    the area:
    A=L*W
    A=10*3
    A=30cm^2

    ReplyDelete
  91. #19:
    y = x² + 3x³
    dy/dx = 2x + 3x²
    at stationary points, dy/dx = 0
    therefore: 2x + 3x² = 0
    therefore: x (2 + 3x) = 0
    therefore: either x = 0 or 3x = -2
    therefore: x = 0 or x = -2/3
    when x= 0, y = 0.
    When x = -2/3, y = ?
    Y = (-2/3)² + (-2/3)³
    Y = 4/27
    Therefore coordinates of the stationary points:
    (0,0) and (-2/3, 4/27)

    ReplyDelete
  92. This comment has been removed by the author.

    ReplyDelete
  93. Perimeter=L+L+b+b
    =2L + 2(x)
    x=3 -->
    26=2L + 2(3)
    2L=26 - 6
    L=20/2
    L=10 cm

    ReplyDelete
  94. L=10cm
    b= 3cm
    Area = L*b
    = 10*3
    = 30 cm^2

    ReplyDelete
  95. 2. 3p + 2r = 7
    P^2 – 2r = 11
    Equation (1) add equation (2)
    3p + p^2 = 18
    P + p^2 = 18/3
    P + p^2 = 6
    Cannot complete
    HELP!!!!!!!

    ReplyDelete
  96. 3. 8x^2 + 3y^2 = 50………1
    2x + y = 5………………2
    y = 5 – 2x
    substitute y = 5 – 2x into equation (1)
    8x^2 + 3(5 – 2x)^2 = 50
    8x^2 + 3(25 + 4x) = 50
    8x^2 + 75 + 12x = 50
    Cannot complete
    HELP!!!!!!!

    ReplyDelete
  97. 4. 9x^2 – 9x + 1
    In the form
    a (x + b)^2 + c
    x = -b/2a
    x = -(-9)/18
    x = 9/18
    x = 2
    Therefore (x – 2)^2
    Substitute x = 2 into the original equation
    To get the value of ‘c’
    9(2)^2 – 9(2) + 1 = 19
    Write in the form
    a (x + b) ^2 + c
    9 (x – 2 )^2 + 19

    ReplyDelete
  98. the above equation has a maximum value bescuse the value which 'c' represents is positive

    ReplyDelete
  99. the valueof x at which the maximum value is obtained is '+2'

    ReplyDelete
  100. 9.Factorise x^2 + x -12
    cannot complete........
    if it could i can't

    ReplyDelete
  101. (2) solve for x and y
    3p+2r=7
    p^2-2r=11
    4p^3=18
    p^3=18/4
    p=cube root of 4.5
    p= 1.65
    3(1.65)+2r=7
    2r=7-4.95
    2r=2.05
    r=2.05/2
    r=1.025

    ReplyDelete
  102. perimeter 26cm
    length x cm
    width x equals 3cm
    then
    2L + 2W = 26
    2(x)+ 2(3)=26
    2x+6=26
    therfore
    2x=26-6
    2x=20
    x=10
    area is l*b
    area = 10*3=30cm^3

    ReplyDelete
  103. number (1)

    perimeter = 26
    2L + 2W = 26
    W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm

    ReplyDelete
  104. number (2)

    3p + 2r = 7.........eq1
    p^2 - 2r = 11.......eq2

    eq1 + eq2

    3p + p^2 + 2r + - 2r = 18
    3p + p^2 = 18
    p^2 + 3p - 18 = 0
    p^2 + 6p - 3p - 18 = 0
    p(p + 6) - 3(p + 6) = 0
    (p + 6)(p - 3) = 0
    p + 6 = 0 p - 3 = 0
    p = -6 p = 3

    substitute p values into eq1:

    3p + 2r = 7
    3(-6) + 2r = 7
    -18 + 2r = 7
    2r = 25
    r = 12.5

    3p + 2r = 7
    3(3) + 2r = 7
    9 + 2r = 7
    2r = -2
    r = -1


    (p= -6,r=12.5)and when(p=3,r= -1)

    ReplyDelete
  105. number (3)

    8x^2 + 3y^2 = 50......(1)
    2x + y = 5......(2)

    From (2)
    2x + y = 5
    y = 5 - 2x......(3)

    sub (3) into (1)
    8x^2 + 3(5 - 2x)^2 = 50
    8x^2 + 3(25 - 20x + 4x^2) = 50
    8x^2 + 75 - 60x + 12x^2 = 50
    20x^2 - 60x + 75 - 50 = 0
    20x^2 - 60x + 25 = 0
    /5: 4x^2 - 12x + 5 = 0
    4x^2 - 2x - 10x + 5 = 0
    2x(2x - 1) - 5 (2x - 1) = 0
    (2x - 1) (2x - 5) = 0
    2x - 1 = 0 2x - 5 = 0
    2x = 1 2x = 5
    x = 1/2 x = 5/2

    sub x into (2)
    2x + y = 5
    2(1/2) + y = 5
    1 + y = 5
    y = 4

    2x + y = 5
    2(5/2) + y = 5
    5 + y = 5
    y = 0

    x = 1/2
    y = 4
    x = 5/2
    y = 0

    ReplyDelete
  106. 9. Factorise
    x^2 + x -12
    (x + 4) (x - 3)

    ReplyDelete
  107. 10. Evaluate
    (5x^2 + 4x + 1) + (-7x + 2)
    multiply the sign outside the bracket
    by what is in the bracket
    + (-7x + 2)
    = (-7x + 2)
    Multiply the first bracket by the second bracket
    (5x^2 + 4x + 1) + (-7x + 2)
    -35x^3 + 10 x^2 – 28x^2 + 8x – 7x + 2
    -35x^3 – 18x^2 + x + 2

    ReplyDelete
  108. i think there is a mistake in question 14 because i dont know wat line is 'AN' can anynoe help me please....

    ReplyDelete
  109. #8
    y = x^3 - 12 x - 12
    dy/dx=3x^2-12
    d^2y/dx^2=6x

    ReplyDelete
  110. #8
    dy/dx=3x^2-12
    3x^2-12=0

    solve for x

    ReplyDelete
  111. perimeter = 26cm
    length = x
    width = 3cm
    perimeter = 2(L+w)
    = 2(x + 3)
    perimeter = 2x + 6
    26 = 2x + 6
    2x = 26 - 6
    2x = 20
    x = 20/2
    x = 10
    length = 10cm

    ReplyDelete
  112. area of rectangle = l x b
    = (2x + 6)(x)
    = 2x^2 + 6x
    dA/dx = (2)2x^2-1 + 6
    dA/dx = 4x + 6
    when dA/dx = 0, area is maximum;
    0 = 4x + 6
    4x = -6
    x = -6/4
    x = -3/2
    when width = -3/2, maximum area is achieved

    ReplyDelete
  113. people, the question did not ask us find the area of the rectangle after finding the length...it is asking us the value of the width which will give us the maximum value for the area of the rectangle...thats when dA/dx = 0

    ReplyDelete
  114. hey sexy ducklin, when you find the expression for "p", substitute that into the second equation, dont find for "r" one time,you will find it if you put it into the other equation...catch?

    ReplyDelete
  115. snowwhite, you have a triangle which is equal to half of the parallelogram. you are right in saying that you dont have a perpendicular height, therefore you cannot use (b x h)/2 but there is another method you can use, just incase it comes in exams: (1/2)(ab sinx), where 'a' and 'b' are two sides of the triangle and 'x' is the angle between them...hopes this helps a bit...

    ReplyDelete
  116. sexy ducklin, for question 5, use the cosine rule to find HF. you have the two lengths and the angle between them so this is the rule to use...

    ReplyDelete
  117. if perimeter = 26
    2L + 2W = 26
    BUT W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm
    Aera = L x W
    = 10 x 3
    =30cm^2

    ReplyDelete
  118. 3p+2r=7
    p^2-2r=11
    using elimination method
    3p-p^2=-4
    -p^2+3p+4=0 *-1
    p^2-3p-4=0
    p^2-4p+p-4=0
    p(p-4)+1(p-4)=0
    (p-4)(p+1)=0
    p=4 , p=-1

    #2
    subs.p into 3p+2r=7
    p=4
    3(4)+2r=7
    2r=-5
    r=-5/2
    p=-1
    3(-1)+2r=7
    2r=10
    r=10/2
    r=5

    ReplyDelete
  119. #3:
    8x² +3y² = 50…......eq 1
    2x + y = 5..........eq 2
    Using eq(2) y = 5-2x
    Therefore, 8x² + 3 (5-2x)² = 50
    8x² + 75 – 60x +12x² = 50
    20x² – 60x +25 = 0..../ eq by 5.
    4x² – 12x + 5 = 0
    4x² – 2x – 10x +5 =0
    After factorizing (2x-1) (2x-5) =0
    Therefore x = 0.5 and 2.5
    Subst. x= 0.5 into equ 2….
    2(0.5) + y = 5
    1 + y = 5
    Therefore when x=0.5, y=4
    Subst x=2.5 into equation 2…….
    2(2.5) +y = 5
    5 + y = 5
    Therefore when x= 2.5, y=0.

    ReplyDelete
  120. hey anybody willing to help and explain question #4 i'm getting trouble with it

    ReplyDelete
  121. #1: Perimeter = (L+B) X 2
    26 = (L+B)2
    26= (x+3)2
    13 = x + 3
    Therefore length, x, = 10cm

    ReplyDelete
  122. Area of rectangle

    L=10cm
    b= 3cm
    therefore:
    Area = Lxb
    = 10x3
    = 30 cm^2

    ReplyDelete
  123. 2(L+W) =26
    L + W = 13
    W= 13 –x
    Therefore since length = x, and width = (13 – x),
    Area= LxB
    = (x) (13-x)
    = 13x - x²

    width of rectangle= 13- 2x
    13 = 2x
    6.5cm = x
    maximum area of rectangle = L x B
    = 10cm x 6.5cm
    = 65cm²

    ReplyDelete
  124. perimeter = 26cm
    width = 3
    since perimeter of rectangle = 2L + 2W
    26 = 2L + 2(3)
    26 = 2L + 6
    2L = 26 - 6
    2L = 20
    L = 20/2
    L = 10cm
    when L = 10cm
    area of a rectangle = L * W
    = 10cm * 3cm
    = 30cm^2

    ReplyDelete
  125. (14) for number 14 use cosine rule to find the length of HF Hf=6 then they asked for the area of the parallogram and you know that a parallogram has four sides and on right angles so i desided to brake it up into two right angle triangles and a rectangle work out the area for each and add them together the answer i got for the area was 23.7 some please give me some feed back

    ReplyDelete
  126. 9)

    x^2+x-12
    x^2-3x+4x-12
    (x^2-3x)(+4x-12)
    x(x-3)+4(x-3)
    (x-3)(x+4)

    ReplyDelete
  127. (8) (5x^2 + 4x + 1) + (-7x + 2)
    5x^2 + 4x + 1 -7x + 2
    5x^2 - 3x + 3

    ReplyDelete
  128. 10.

    (5x^2+4x+1)+(-7x+2)
    5x^2+4x+1-7x+2
    5x^2+4x-7x+1+2
    5x^2-3x+3

    ReplyDelete
  129. need some help for solving question 19)

    ReplyDelete
  130. #6 (a)
    fw= tan54 =opp/adj
    = tan54 =x/28
    =28tan54 = x
    =38.5m

    ReplyDelete
  131. #6(b)
    tf=tan40=opp/adj
    =tan 40 =x/28
    =28tan40=x
    =23.4m

    ReplyDelete
  132. therfore
    tw = fw-ft
    =38.5-23.4
    =15.1m

    ReplyDelete
  133. perimeter= 26 cm.
    length= x cm.
    width= 3cm.

    p= (l+w)2
    (l+w)2=26.
    2x+2w=26.
    2x+ 2(3)=26.
    2x+6=26.
    2x=26-6
    2x=20
    x=10.

    area...(A)=l*w.
    A= 10 * 3
    A = 30 cm^2.


    2(l+w)=26.
    l+w=13.
    recall that l+x.
    w=13-x.

    A=l*w
    A=(x) (13-x)
    A=.....~expand brackets~....
    A=13x-x^2
    dA/dx= 13-2x.

    to find the width, make x the subject of the formula...

    w=13-2x.
    13=2x
    x=13/2
    x=6.5cm

    maximum area= length * width.
    A= 10*6.5
    A=65cm^2

    ReplyDelete
  134. #3
    8x^2+3y^2=50..........eq1
    2x+y=5................eq2

    y=5-2x subt into eq1
    8x^2+3(5-2x)=50
    8x^2+3(25-20x+4x^2)=50
    8x^2+75-60x+12x^2=50
    20x^2-60x+75=50
    20x^2-60x+75-50=0
    20x^2-60x+25=0

    4x^2-12x+5=0
    4x^2-2x-10x+5=0
    2x(2x-1)-5(2x-1)=0
    (2x-5)(2x-1)
    2x-5=0
    2x=5
    x=2.5
    2x-1=0
    2x=1
    x=1/2

    subx into eq2
    2(2.5)+y=5
    5+y=5
    y=0
    2(1/2)+y=5
    1+y=5
    y=4

    therefor
    when x=2.5, y= o
    and when
    x=1/2, y= 4

    ReplyDelete
  135. 9. x^2+x-12.
    x^2+4x-3x-12.
    x(x+4) -3(x+4).
    (x-3) (x+4)

    ReplyDelete
  136. 9.
    x^2 + x -12
    x^2 - 3x + 4x - 12
    x(x - 3) + 4 (x - 3)
    (x - 3)(x + 4)

    ReplyDelete
  137. 10.
    (5x^2 + 4x + 1) + (-7x + 2)
    5x^2 + 4x + 1 -7x + 2
    5x^2 + 4x - 7x + 1 + 2
    5x^2 - 3x + 3

    ReplyDelete
  138. ques 8

    y = x^3 - 12x - 12
    dy/dx = 3x^2 - 12

    dy/dx = 0 at stationery pt

    3x^2 - 12 = 0
    3x^2 -6x + 6x - 12 =0
    3x(x - 2)+6(x -2)=0
    (x-2)(3x+6)=0
    x-2=0 or 3x+6=0
    x=2 or x=-2

    when x=2 y=-28 (2,-28)
    when x=-2 y=4 (-2,4)

    ReplyDelete
  139. 12
    Simplify (8x^4 - 2x^2)/2x^2

    4x^2 - 1

    ReplyDelete
  140. 11.
    5x^2 + 13x - 6
    5x^2 + 15x - 2x - 6
    5x(x + 3) - 2(x + 3)
    (x + 3)(5x - 2)

    ReplyDelete
  141. 12.
    (8x^4 - 2x^2)/2x^2
    8x^4/2x^2 - 2x^2/2x^2
    4x^4/x^2 - 1
    4x^2 - 1

    ReplyDelete
  142. 13.
    3x^2 - 48
    3[(x^2) - (4)^2]
    3[(x + 4)(x - 4)]

    ReplyDelete
  143. 5.
    when EHF is extracted from the diagram, the shape of the structure is a triangle.
    you have an angle(HEF)= 70 degrees.
    the side EH (f)= 4.2cm.
    the side EF (h)= 6cm.

    to find FH, use the cosine rule.

    e^2= h^2+f^2 - 2 hf Cos E.
    e^2= (6)^2 + (4.2)^2 - 2(6) (4.2) Cos 70.
    e^2= 53.64 - 50.4 Cos 70.
    e^2= 53.64 - 17.24
    e^2= 36.4
    square root of e= 6.03 cm.

    area.
    6.03* 4.2= 25.326 cm^2

    ReplyDelete
  144. can someone help with #20.
    i do not know how to approach this question as i am not understanding how to sketch the graph.
    any help would be appreciated.

    ReplyDelete
  145. 16.
    y = 6x^2 + 32/x^3
    dy/dx = 12x + 96x^2

    ReplyDelete
  146. thank you bornagain 16 that realy helps, can u please solve a ques on vector an post it so i can use it as an example.

    ReplyDelete
  147. 19.
    y = x^2 + x^3
    dy/dx = 2x + 3x^2

    dy/dx = 0 for a stationay point

    ∴ 2x + 3x^2 = 0
    x(2 + 3x) = 0
    x = 0

    2 + 3x = 0
    3x = -2
    x = -2/3

    subet x values into original equation to find coordinates of stationary point

    when x = 0
    y = x^2 + x^3
    y = 0^2 + 0^3
    y = 0

    when x = -2/3
    y = x^2 + x^3
    y = (-2/3)^2 + (-2/3)^3
    y = 4/27

    so corresponding stationary points are
    when (x = 0, y = 0)
    when (x = -2/3, y = 4/27)

    ReplyDelete
  148. perimeter = 26
    2L + 2W = 26
    W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm

    ReplyDelete
  149. no. 6
    tan theta= opp/adj
    adj*tan theta= opp
    using triangle FWP=
    28*tan54=38.5
    therefore FW= 38.5
    using triangle FWT=
    28*tan40= 23.5
    therefore FT= 23.5
    FW-FT= TW
    38.5-23.5=15

    ReplyDelete
  150. #1
    p=2L+2W
    sub when w=3cm & p=26
    p=2x=2(3)
    26=2x+6
    2x+6=26
    2x=26-6
    2x=20
    x=20/2
    i.e L=10cm

    ReplyDelete
  151. #2
    3p+2r=7......equ 1
    p^2-2r=11....equ 2

    using subsitution method

    3p+2r=7
    2r=7-3p
    r=7-3p/2
    i.e r=7/2-3p/2

    ReplyDelete
  152. #2

    sub into equ 2 when r=7/2-3p/2

    p^2-2r=11
    p^2-2(7/2-3p/2)=11p^2-7+3p=11
    p^2+3p=11+7
    3p^3=18
    p^3=18/3
    p=cube root of 6
    p=1.8

    ReplyDelete
  153. #2
    sub into equ 1 when p=1.8

    3p+2r=7
    3(1.8)+2r=7
    5.4+2r=7
    2r=7-5.4
    r=1.6/2
    r=0.8

    ReplyDelete
  154. #3
    8x^2+3y^2=50....equ 1
    2x+y=5....equ 2

    2x+y=5
    y=5-2x

    ReplyDelete
  155. #3
    sub into equ 1 when y=5-2x

    8x^2+3(5-2x)^2=50
    8x^2+3(25-20x+4x^2)=50
    8x^2+75-30x+12x^2=50
    8x^2-30x+12x^2=75-50
    8x^2+12x^2-30x=25
    10x^3=25
    x^3=25/10
    x=cube root of 2.5
    x=1.4

    ReplyDelete
  156. #3
    sub into equ 1 when x=1.4

    2x+y=5
    2(1.4)+y=5
    y=5-2(1.4)
    y=5-2.8
    y=2.2

    ReplyDelete
  157. #9
    x^2+x-12
    x^2+4x-3x-12
    x(x+4)-3(x+4)
    (x+4)(x-3)

    ReplyDelete
  158. #10
    5x^2+4x+1+(-7x+2)
    5x^2+4x+1-7x+2
    5x^2+4x-7x+1+2
    5x^2-3x+3
    2x

    ReplyDelete
  159. #11
    5x^2+13x-6
    5x^2+15x-2x-6
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  160. #12
    (8x^4-2x^2)/2x^2
    8x^4/2x^2 - 2x^2/2x^2
    4x^2

    ReplyDelete
  161. #13
    3x^2-48
    3x^2/3 - 48/3
    x^2-16
    (x-4)(x+4)

    ReplyDelete
  162. #14
    i believe something is not right with #14

    ReplyDelete
  163. #16
    y=6x^2+32/x^3
    y=6x^2+32x^-3
    dy/dx=12x-96x^-4

    ReplyDelete
  164. #17
    y=x^2+54/x
    y=x^2+54x^-1
    dy/dx=2x-54x^-2

    ReplyDelete
  165. no. 19

    y=x^2+x^3

    dy/dx = 2x+3x^2

    for stat pts dy/dx=0

    3x^2+2x=0

    x(3x+2)=0

    x=0
    or

    3x+2=0
    3x=-2
    x=-2/3

    subt. x=0 and x=-2/3 into y=x^2+x^3

    y=(0)^2+(0)^3
    y=0

    y=(-2/3)^2+(-2/3)^3
    =4/9-8/27
    =4/27

    = (0,0), and (-2/3,4/27)

    ReplyDelete
  166. no9. Factorise x^2 + x -12

    (x - 3)(x + 4)

    ReplyDelete
  167. no11. Factorise 5x^2 + 13x - 6

    (5x + 3) (x + 2)

    ReplyDelete
  168. no13. Factorise 3x^2 - 48

    3(x^2 - 16)

    ReplyDelete
  169. no17. y = x^2 + 54/x, find dy/dx

    dy/dx = 2x -54/x^2

    ReplyDelete
  170. no 18. y = 1 + 4x^3, find dy/dx

    dy/dx = 12x^2

    ReplyDelete
  171. no10. Evaluate (5x^2 + 4x + 1) + (-7x + 2)

    5x^2 + 4x + 1 - 7x + 2

    = 5x^2 - 3x + 3

    ReplyDelete
  172. no 8.

    y = x^3 - 12x - 12
    dy/dx = 3x^2-12
    at stat pts dy/dx= 0
    3x^2 - 12 = 0
    3x^2= 12
    x^2 = 4
    x = 2 or -2
    sub x= 2 in y
    y= (2)^3 - 12(2) - 12
    y = - 28

    sub x= -2
    y= (-2)^3 - 12(-2) -12
    y= 4

    stat pts = (2,-28) and (-2,4)

    ReplyDelete
  173. 5) e^2=h^2+f^2-2hfcosx
    e^2=(6)^2+(4.2)^2-2(6)(4.2)cos70
    e^2=36+17.64-50.4(0.34)
    e^2=53.64-17.136
    e=squar root of 36.504
    e=6.04
    the length of HF = 6.04

    ReplyDelete
  174. Area of rectangle

    L=10cm
    b= 3cm
    therefore:
    Area = Lxb
    = 10x3
    = 30 cm^2

    ReplyDelete
  175. 7)Triangle (ABD)
    tan tayta=opp/adj
    i.e opp=adj tan tayta
    opp=2.5 tan75
    opp=2.5(3.73)
    opp=8.4
    AB=8.4

    ReplyDelete
  176. 1)
    width (W)=3
    perimeter (p)=26

    P=2L+2W
    26=2L+2(3)
    26=2L+6
    26-6=2L
    2L=20
    L=20/2
    L=10

    ReplyDelete
  177. Number 11......

    5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  178. if perimeter = 26
    2L + 2W = 26
    BUT W=3CM
    2L + 2(3) = 26
    2L=26-6
    2L=20
    L=10cm
    Aera = L x W
    = 10 x 3
    =30cm^2

    ReplyDelete
  179. 2)

    3p + 2r = 7.........eq1
    p^2 - 2r = 11.......eq2

    eq1 + eq2

    3p + p^2 + 2r + - 2r = 18
    3p + p^2 = 18
    p^2 + 3p - 18 = 0
    p^2 + 6p - 3p - 18 = 0
    p(p + 6) - 3(p + 6) = 0
    (p + 6)(p - 3) = 0
    p + 6 = 0 p - 3 = 0
    p = -6 p = 3

    substitute p values into eq1:

    3p + 2r = 7
    3(-6) + 2r = 7
    -18 + 2r = 7
    2r = 25
    r = 12.5

    3p + 2r = 7
    3(3) + 2r = 7
    9 + 2r = 7
    2r = -2
    r = -1

    ReplyDelete
  180. d^2y/dx^2=3x^2-12
    using loop

    d^2y/dx^2=6x
    d^2y/dx^2=6/x

    sub when x=2
    d^2y/dx^2=6/2
    =3

    sub when x=-2
    d^2y/dx^2=6/-2
    =-3

    ReplyDelete
  181. 2) 3p+2r=7
    p^2-2r=11

    using method of elimination
    3p-p^2=-4
    -p^2+3p+4=0 *-1
    p^2-3p-4=0
    p^2-4p+p-4=0
    p(p-4)+1(p-4)=0
    (p-4)(p+1)=0
    p=4 , p=-1

    sub p into 3p+2r=7
    p=4
    3(4)+2r=7
    2r=-5
    r=-5/2
    p=-1
    3(-1)+2r=7
    2r=10
    r=5

    ReplyDelete
  182. 11.
    5x^2+13x-6
    5x^2+15x-2x-6
    (5x^2+15x)(-2x-6)
    5x(x+3)-2(x+3)
    (x+3)(5x-2)

    ReplyDelete
  183. 8) (5x^2 + 4x + 1) + (-7x + 2)
    5x^2 + 4x + 1 -7x + 2
    5x^2 - 3x + 3

    ReplyDelete
  184. 12)

    (8x^4-2x^2)/2x^2
    8x^4/2x^2 - 2x^2/2x^2
    4x^2-0
    4x^2

    ReplyDelete
  185. 9)
    x^2+x-12
    x^2-3x+4x-12
    (x^2-3x)(+4x-12)
    x(x-3)+4(x-3)
    (x-3)(x+4)

    ReplyDelete