Thursday, November 19, 2009

1 Find dy/dx if y = 4x ^3 - 3 x^ 2 + 2x
2 Differentiate with respect to x

y = 5 x ^3 - 2 x^ -2 + 1

(3) Find dy/dx at x = ñ/8 if y = 6 x^ 2 + 2 sin x

(4) Differentiate , with respect to ø if

v = 2ø ^ 3 + 2 cos ø + sin ø

(5) Integratewith respect to x

2 x^ 4 + 4/x^ 2+ x

6. Integrate w.r.t. x
2 x ^2( 2x + 3 ) Hint Expand then integrate

7 Integrate (1 + 2 sin x ) wrt x with 45 and 0 degrees as bounds

8. Integrate 2x + 3 cos x ) wrt x with 90 and 60 degrees as bounds

113 comments:

  1. 1) y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)(x^3-1) - 2(3)(x^2-1) + 1(1)(x^1-1)
    = 12x^2 - 6x + 2

    ReplyDelete
  2. 2) y = 5x^3 - 2x^-2 + 1
    dy/dx = 3(5)(x^3-1) - (-2)(2)(x^-2-1) + 0(1)(x^0)
    = 15x^2 + 4x^-3

    ReplyDelete
  3. 3) y = 6x^2 + 2sinx
    dy/dx = 2(6)(x^2-1) + 1(2)(cos)(x)
    = 12x + 2cosx

    x = ñ/8

    therefore:

    dy/dx = 12(ñ/8) + 2cos(ñ/8)
    = 3ñ/2 + cosñ/4

    ReplyDelete
  4. 4) v = 2ø^3 + 2cosø + sinø
    dv/dø = 3(2)(ø^3-1) - 1 (2)(sin)(ø) + 1(cos)(ø)
    = 6ø^2 - 2sinø + cosø

    ReplyDelete
  5. num(5)
    2x^4+4/x^2+x
    2x^4+4x^-2+x
    2x^5/5+4x^-1/-1+x^1/1 +c

    correct me if i am incorrect

    ReplyDelete
  6. num (6)
    2x^2(2x+3)
    4x^3+6x^2
    4x^4/4+6x^3/3
    x^4+2x^3 +C

    ReplyDelete
  7. num(7)
    1+2sinx
    x-2cosx
    bounds between 45 and 0
    ithink you have to put your calculator on radians mode
    (45-2cos(45))-(0-2cos(0))
    (43.95)-(-2)=45.95
    i dont know if this correct

    ReplyDelete
  8. y = 4x ^3 - 3 x^ 2 + 2x
    Using anx^n-1: dy/dx 4(3)x^3-1-3(2)x^2-1+2(1)x^1-1.
    dy/dx 12x^2-6x+2.

    ReplyDelete
  9. y = 5 x ^3 - 2 x^ -2 + 1.
    dy/dx = 15x^2+4x^-3.

    ReplyDelete
  10. 4x^3-3x^2+2x
    dy/dx=4(3)(x^3-1)-3(2)(x^2-1)+2
    =12x^2-6x

    ReplyDelete
  11. in question 1: y = 4x^3 - 3x^2 + 2x

    the deferential of 4x^3 = 3(4)x^(3-1)
    = 12x^2

    the deferential of 3x^2 = 2(3)x^(2-1)
    = 6x

    the deferential of 2x = 2

    hence:
    dy/dx = 12x^2 - 6x + 2

    ReplyDelete
  12. in question 2: y = 5x^3 - 2x^-2 + 1


    with respect to x:

    the deferential of 5x^3 = 3(5)x^(3-1)
    = 15x^2

    the deferential of 2x^-2 = -2(2)x^(-2-1)
    = -4x^-3

    the deferential of 1 = 0

    hence:
    dy/dx = 15x^2 + 4x^-3

    ReplyDelete
  13. 4)
    v=2@^2+2cos@+sin@
    then dv/d@ = 3(2)@^2-2sin@+cos@
    = 6@^2-2sin@+cos@

    ReplyDelete
  14. 1 y = 4x ^3 - 3 x^ 2 + 2x
    dy/dx = 12x^2 - 6x + 2

    ReplyDelete
  15. 2 y = 5 x ^3 - 2 x^ -2 + 1
    dy/dx = 15x^2 +4x^-3

    ReplyDelete
  16. (4)v = 2ø ^ 3 + 2 cos ø + sin ø
    dv/dø = 6ø^2 - 2sin ø + cos ø

    ReplyDelete
  17. 2 x^ 4 + 4/x^ 2+ x
    dy/dx = 8x^3 - 8x^-3 + 1

    ReplyDelete
  18. 1. y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)[x^(3-1)] - 2(3)[x^(2-1)] + 2[x^(1-1)]
    = 12x^2 - 6x + 2

    ReplyDelete
  19. 2) y = 5x^3 - 2x^-2 + 1
    dy/dx = 3(5)[x^(3-1)] - (-2)(2)[x^(-2-1)] + 0
    = 15x^2 + 4x^-3

    ReplyDelete
  20. 3. y = 6 x^ 2 + 2 sin x
    dy/dx = 12 x + 2 cosx

    when x = ñ/8

    dy/dx = 12(ñ/8) + 2cos(ñ/8)
    = 3/2ñ + 1.85
    = 4.71 + 1.85
    = 6.56

    ReplyDelete
  21. 4. v = 2ø ^ 3 + 2 cos ø + sin ø
    dv/dø= 2(3)[ø^(3-1)] +2 (-sinø) + cosø
    = 6ø^2 - 2sinø + cosø

    ReplyDelete
  22. 5. 2 x^ 4 + 4/x^ 2+ x

    bring downstairs up:

    2x^4 + 4x^-2 + x

    integrate:
    [2/(4+1)] x^(4+1) + [4/(-2+1)]x^(-2+1) + [1/(1+1)] x^(1+1)

    2/5 x^5 - 4x^-1 + x^2/2

    ReplyDelete
  23. when y =4x^3-3x^2+2x
    dy/dx= 3(4)(x^3-1)-2(3)(x^2-1)+1(1)(x^1-1)
    =12x^2-6x+2

    ReplyDelete
  24. 1)
    y=4x^3-3x^2+2x
    dy/dx= 12x^2-6x+2

    ReplyDelete
  25. 2)
    dy/dx=5x^3-2x^-2+1
    =15x^2+4x^-3

    ReplyDelete
  26. 5)
    y=2x^4+4/x^2+x dx
    y=2x^4+4x^-2+x dx
    y=2x^5/5+4x^-1+x^2/2

    ReplyDelete
  27. 6)
    y=2x^2(2x+3)
    y=4x^3+6x^2 dx
    y=4x^4/4+6x^3/3

    ReplyDelete
  28. y=4x^3-3x^2+ 2x
    dy/dx=3(4)(x^3-1)- 2(3)(x^2-1) + 1(1)(x^1-1)
    = 12x^2 - 6x + 2

    ReplyDelete
  29. 2. y = 5x^3 - 2x^-2 + 1
    dy/dx = 3(5)(x^3-1) - (-2)(2)(x^-2-1) + 0(1)(x^0)
    = 15x^2 + 4x^-3

    ReplyDelete
  30. 5. 2 x^ 4 + 4/x^ 2+ x
    2x^4 + 4x^-2 + x
    [2/(4+1)] x^(4+1) + [4/(-2+1)]x^(-2+1) + [1/(1+1)] x^(1+1)

    2/5 x^5 - 4x^-1 + x^2/2

    ReplyDelete
  31. 7.(1 + 2 sin x )
    x-2cosx
    sub 45 degrees an 0
    (45-2cos(45))
    (43.95)
    i not sure if this correct if not then what is teh correct answer

    ReplyDelete
  32. (1)
    y = 4x ^3 - 3 x^ 2 + 2x
    dy/dx= (4*3)x^(3-1) - (3*2)x^(2-1) + 2 x^(1-1)
    dy/dx= 12x^2 - 6x + 2

    ReplyDelete
  33. 2 Differentiate with respect to x


    (2) y = 5 x ^3 - 2 x^ -2 + 1
    dy/dx= (5*3)x^(3-1) - (2*-2)x^(-2-1)
    dy/dx= 15x^2 + 4x^-3
    dy/dx= 15x^2 + 4/x^3

    ReplyDelete
  34. (3) Find dy/dx at x = ñ/8 if y = 6 x^ 2 + 2 sin x
    y = 6 x^ 2 + 2 sin x
    dy/dx= (6*2)x^(2-1) + 2 cosx
    dy/dx= 12x + 2 cosx
    sub x= ñ/8
    dy/dx= 12(ñ/8) + 2 cos(ñ/8)
    dy/dx= 12ñ/8 + 2 cos ñ/8
    dy/dx= 3ñ/ 2 + 2 cos ñ/8
    divide the equation by 2
    therefore : dy/dx= 3ñ + 2cos ñ/4

    ReplyDelete
  35. (4)
    v = 2ø ^ 3 + 2 cos ø + sin ø
    dv/dø= (2*3)ø^ (3-1) - 2 sin ø + cos ø
    dv/dø= 6ø^2 - 2 sin ø + cos ø

    ReplyDelete
  36. (5) Integratewith respect to x

    2 x^ 4 + 4/x^ 2+ x

    (5)2 x^ 4 + 4/x^ 2+ x
    ∫2x^4 + 4x^-2 + x dx
    = ∫(2x^(4+1))/(4+1)+ (4x^ (-2+1))/ (-2+1) + (x^(1+1))/(1+1)
    = ∫ ((2x^5)/5) + (4x^-1)/-1) + ((x^2)/2)

    ReplyDelete
  37. 6. Integrate w.r.t. x
    2 x ^2( 2x + 3 ) Hint Expand then integrate

    2 x ^2( 2x + 3 )
    =2x^2 * 2x + 2x^2 *3
    = 4x^3 + 6x^2
    = ∫ 4x^3 + 6x^2
    = ∫ (4x^(3+1))/(3+1)) + (6x^(2+1)/(2+1))
    =∫ (4x^4)/4 + (6x^3)/3
    =∫ x^4 + 2x^3

    ReplyDelete
  38. number1

    y = 4x ^3 - 3 x^ 2 + 2x
    dy/dx= 12x^2- 6x+ 2

    ReplyDelete
  39. number2
    showing full steps (sorry about the above one)

    y = 5 x ^3 - 2 x^-2 + 1
    dy/dx= (3)5x^(3-1)- (1)2x^(-2-1)
    = 15x^2 - 2x^-3

    ReplyDelete
  40. 1.
    y = 4x^3 - 3x^2 + 2x
    dy/dx = 12x^2 - 6x + 2

    ReplyDelete
  41. 2.
    y = 5x^3 - 2x^-2 + 1
    dy/dx = 15x^2 +4x^-3

    ReplyDelete
  42. 4.
    v = 2ø^3 + 2cosø + sinø
    dv/dø = 6ø^2 - 2sinø + cosø

    ReplyDelete
  43. 5.
    y=2x^4+4/x^2+x dx
    y=2x^4+4x^-2+x dx
    integral=2x^5/5+4x^-1+x^2/2

    ReplyDelete
  44. 3).
    y= 6x^2+2 sin x
    dy/dx= 12x+2 cos x

    when x= n/8

    dy/dx= 12(n/8)+2 cos(n/8)

    ReplyDelete
  45. 4).
    v=2@^3+2cos@+cos@
    dv/d@=6@^2-2sin@+cos@

    ReplyDelete
  46. 5).
    2x^4+4/x^2+x

    the integral of that is 8x^5/5-8x^-1/-1+x^2/2+c
    = 8x^5/5+8x^-1+x^2/2+c

    ReplyDelete
  47. 6).
    2x^2(2x+3)
    4x^3+6x^2

    the integral of that is 4x^4/4+6x^3/3
    = x^4+2x^3

    ReplyDelete
  48. 7).
    1+2sinx

    the integral of that is x-2cosx
    using the bounds 45 and 0 degrees

    [45-2cos45]-[0-2cos0]
    43.59-2
    41.59

    ReplyDelete
  49. 8).
    2x+3cosx

    the integral of that is 2x^2/2+3sinx
    = x^2+3sinx

    using bounds 90 and 60 degrees.

    [(90)^2+3sin90]-[(60)^2+3sin60]
    8103-3602.60
    4500.4

    ReplyDelete
  50. (3) Find dy/dx at x = ñ/8 if y = 6 x^ 2 + 2 sin x
    y = 6 x^ 2 + 2 sin x
    dy/dx= (6*2)x^(2-1) + 2 cosx
    dy/dx= 12x + 2 cosx
    sub x= ñ/8
    dy/dx= 12(ñ/8) + 2 cos(ñ/8)
    dy/dx= 12ñ/8 + 2 cos ñ/8

    ReplyDelete
  51. dv/dø = 6ø^2 - 2sin ø + cos ø

    ReplyDelete
  52. for question 1
    y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)(x^3-1) - 2(3)(x^2-1) + 1(1)(x^1-1)
    = 12x^2 - 6x + 2

    ReplyDelete
  53. question 6
    2x^2(2x+3)
    4x^3+6x^2
    4x^4/4+6x^3/3
    x^4+2x^3 +C
    correct?

    ReplyDelete
  54. can sum1 please tell me what w.r.t means

    ReplyDelete
  55. 1. y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)[x^(3-1)] - 2(3)[x^(2-1)] + 2[x^(1-1)]
    = 12x^2 - 6x + 2

    ReplyDelete
  56. 2) y = 5x^3 - 2x^-2 + 1
    dy/dx = 3(5)[x^(3-1)] - (-2)(2)[x^(-2-1)] + 0
    = 15x^2 + 4x^-3

    ReplyDelete
  57. 3. y = 6 x^ 2 + 2 sin x
    dy/dx = 12 x + 2 cosx

    when x = ñ/8

    dy/dx = 12(ñ/8) + 2cos(ñ/8)
    = 3/2ñ + 1.85
    = 4.71 + 1.85
    = 6.56

    ReplyDelete
  58. 4. v = 2ø ^ 3 + 2 cos ø + sin ø
    dv/dø= 2(3)[ø^(3-1)] +2 (-sinø) + cosø
    = 6ø^2 - 2sinø + cosø

    ReplyDelete
  59. 5. 2 x^ 4 + 4/x^ 2+ x

    bring downstairs up:

    2x^4 + 4x^-2 + x

    integrate:
    [2/(4+1)] x^(4+1) + [4/(-2+1)]x^(-2+1) + [1/(1+1)] x^(1+1)

    2/5 x^5 - 4x^-1 + x^2/2

    ReplyDelete
  60. 2. y = 5x^3 - 2x^-2 + 1


    with respect to x:

    the deferential of 5x^3 = 3(5)x^(3-1)
    = 15x^2

    the deferential of 2x^-2 = -2(2)x^(-2-1)
    = -4x^-3

    the deferential of 1 = 0

    hence:
    dy/dx = 15x^2 + 4x^-3

    ReplyDelete
  61. integrate with respect to x

    2 x^ 4 + 4/x^ 2+ x

    2 x^ 4 + 4/x^ 2+ x
    ∫2x^4 + 4x^-2 + x dx
    = ∫(2x^(4+1))/(4+1)+ (4x^ (-2+1))/ (-2+1) + (x^(1+1))/(1+1)
    = ∫ ((2x^5)/5) + (4x^-1)/-1) + ((x^2)/2)

    ReplyDelete
  62. 3.y= 6x^2+2 sin x
    dy/dx= 12x+2 cos x

    when x= n/8

    dy/dx= 12(n/8)+2 cos(n/8

    ReplyDelete
  63. 1)
    y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)(x^3-1) - 2(3)(x^2-1) + 1(1)(x^1-1)
    = 12x^2 - 6x + 2

    ReplyDelete
  64. 2)
    y = 5x^3 - 2x^-2 + 1
    dy/dx = 15x^2 +4x^-3

    ReplyDelete
  65. 3)
    y = 6 x^ 2 + 2 sin x
    dy/dx = 12 x + 2 cosx

    when x = ñ/8
    dy/dx = 12(ñ/8) + 2cos(ñ/8)
    = 3/2ñ + 1.85
    = 4.71 + 1.85
    = 6.56

    ReplyDelete
  66. 5)
    2 x^ 4 + 4/x^ 2+ x
    2x^4 + 4x^-2 + x
    [2/(4+1)] x^(4+1) + [4/(-2+1)]x^(-2+1) + [1/(1+1)] x^(1+1)
    2/5 x^5 - 4x^-1 + x^2/2

    ReplyDelete
  67. 6)
    2x^2(2x+3)
    4x^3+6x^2
    4x^4/4+6x^3/3
    x^4+2x^3

    ReplyDelete
  68. When differentiating you must multiply the number infront of the variable by the power then minus one from the power,
    ie.if you have 2x^3 then the diffrential is 12x^2

    if there is no power then the number infront of the variable is what the diffrential would be, ie. 2x the differential is 2

    if there is only a number then it dissappears and is no longer present in the equation.

    ReplyDelete
  69. This comment has been removed by the author.

    ReplyDelete
  70. 1) y = 4x ^3 - 3 x^ 2 + 2x
    dy/dx = (4*3)x^(3-1) - (3*2)x^(2-1)+ 2
    dy/dx = 12x^2 - 6x + 2

    ReplyDelete
  71. 2) y = 5 x ^3 - 2 x^ -2 + 1
    dy/dx = (5*3)x^(3-1) - (2*-2)x^(-2-1)
    dy/dx = 15x^2 + 4x^-3

    ReplyDelete
  72. 3) y = 6 x^ 2 + 2 sin x
    dy/dx = (6*2)x^(2-1) + 2sinx
    dy/dx = 12x + 2cosx
    ~
    when x = n/8
    then 12x +2cosx
    =12(n/8) + 2cos(n/8)
    ???
    HELP!!!!!!!!!!
    *sigh* i'm confused!!!!
    can someone who understands this please explain????? :(

    ReplyDelete
  73. 3)
    y=6x^2+2sinx
    dy/dx=12x+2cosx
    when x=n/8

    dy/dx=12(n/8)+2cos(n/8)

    ReplyDelete
  74. 4)
    v=2@^3+2cos@+sin@
    dv/d@=6@^2-2sin@+cos@

    ReplyDelete
  75. 5)
    2x^4+4x^-2+x
    2x^5/5+4x^-1/-1+x^2/2+c

    ReplyDelete
  76. 6)
    2x^2(2x+3)
    4x^3+6x^2
    4x^4/4+6x^3/3
    x^4+2x^3

    ReplyDelete
  77. 7)
    1+2sinx
    1x-2cosx
    1(45)-2cos45
    45-1.414
    43.586

    ReplyDelete
  78. 8)2x+3cosx
    x^2+3sinx
    using 90and60 bounds

    90^2+3sin90
    1803 and
    60^2+3sin60
    3600+2.6
    3602.6
    so 8103-3602.6
    4500.4

    ReplyDelete
  79. This comment has been removed by the author.

    ReplyDelete
  80. v = 2@^3 + 2cos@ + sin@
    dv/d@ = 3(2)(@^3-1) - 1 (2)(sin@) + 1(cos@)
    = 6@^2 - 2sin@ + cos@

    ReplyDelete
  81. number (1)

    y = 4x^3 - 3x^2 + 2x
    dy/dx = 3(4)(x^3-1) - 2(3)(x^2-1) + 1(1)(x^1-1)
    = 12x^2 - 6x + 2

    ReplyDelete
  82. number (2)

    y = 5x^3 - 2x^-2 + 1
    dy/dx = 15x^2 +4x^-3

    ReplyDelete
  83. number (3)

    y = 6 x^ 2 + 2 sin x
    dy/dx = 12 x + 2 cosx

    when x = ñ/8

    dy/dx = 12(ñ/8) + 2cos(ñ/8)
    = 3/2ñ + 1.85
    = 4.71 + 1.85
    = 6.56

    ReplyDelete
  84. number (4)

    v = 2ø^3 + 2cosø + sinø
    dv/dø = 6ø^2 - 2sinø + cosø

    ReplyDelete
  85. number (5)

    2x^4+4x^-2+x
    2x^5/5+4x^-1/-1+x^2/2+c

    ReplyDelete
  86. number (6)

    2x^2(2x+3)
    4x^3+6x^2
    4x^4/4+6x^3/3
    x^4+2x^3

    ReplyDelete
  87. number (7)

    1+2sinx
    1x-2cosx
    1(45)-2cos45
    45-1.414
    43.586

    ReplyDelete
  88. number (8)

    2x+3cosx
    x^2+3sinx
    using 90and60 bounds

    90^2+3sin90
    1803 and
    60^2+3sin60
    3600+2.6
    3602.6
    so 8103-3602.6
    4500.4

    ReplyDelete
  89. integration is the reverse of differentiation.
    ie. add one to the power then divide by the power eg. ∫5x^2 dx
    =[5x(2+1)]/3
    = 5x^3/3

    ReplyDelete
  90. This comment has been removed by the author.

    ReplyDelete
  91. 5) 2 x^ 4 + 4/x^ 2+ x
    =2x^4 + 4x^-2 + x
    =[2x^(4+1)]/5 + 4x^(-2+1)/-1 + x^2/2
    =2x^5/5 + 4x-1/-1 + x^2/2 + c

    ReplyDelete
  92. 6) 2x^2 (2x+3)
    = 4x^3 + 6x^2
    =[4x^(3+1)]/4 + [6x^(2+1)/3)
    = x^4 + 2x^3 + c

    ReplyDelete
  93. This comment has been removed by the author.

    ReplyDelete
  94. 7) Integrate (1 + 2 sin x ) wrt x with 45 and 0 degrees as bounds

    (1 + 2sinx)
    =1x - 2cosx + c
    =[1(45)- 2cos(45)]-[1(0)- 2cos(0)
    =[45 - 1.414]-[2]
    = 43.586 - 2
    = 41.586

    ReplyDelete
  95. 8)Integrate (2x + 3 cos x ) wrt x with 90 and 60 degrees as bounds

    (2x + 3cosx)
    =2x^(1+1)/2 + 3sinx + c
    =2x^2/2 + 3sinx + c
    =(90^2)+ 3sin(90) - (60^2) + 3sin(60)
    = [8100 + 3] - [3600 + 2.6]
    = 8103 - 3602.6
    = 4500.4

    ReplyDelete
  96. Question 1.
    y= 4x ^3 - 3 x^ 2 + 2x
    dy/dx= 12x^2 – 6x +2

    ReplyDelete
  97. Question 2.
    y = 5 x ^3 - 2 x^ -2 + 1
    dy/dx= 15x^2 +4 x^ -3

    ReplyDelete
  98. Question 3.
    y = 6 x^ 2 + 2 sin x
    dy/dx= 12x + 2 cos x
    at x = ñ/8
    dy/dx= 12 (ñ/8) + 2 cos (ñ/8)
    dy/dx = 12 ñ/8 + (2 cos ñ)/8
    dy/dx = 3 ñ/2 + (1 cos ñ)/4

    ReplyDelete
  99. Question 4.
    v = 2ø ^ 3 + 2 cos ø + sin ø
    dv/d ø= 6 ø^ 2 - 2 sin ø + cos ø

    ReplyDelete
  100. Question 5.
    ∫2 x^ 4 + 4/x^ 2+ x dx
    ∫2 x^ 4 + 4x^ -2+ x dx
    2x^5/5 – 4x^-1 + x^2/2 + c {where c is a constant}
    2/5 x^5 – 4/ x + 1/2 x^2 + c

    ReplyDelete
  101. Question 6.
    ∫2 x ^2( 2x + 3 )
    ∫4x^3 + 6x^2 dx
    4x^4/4 + 6x^3/3 + c {where c is a constant}
    X^4 + 2x^3 + c

    ReplyDelete
  102. Question 7.
    ∫(1 + 2 sin x ) dx
    x + 2 cos x + c {where c is a constant}
    For bounds 45 and 0
    [45 + 2 cos 45] – [0 + 2 cos 0]
    [43.586]– [2]
    41.56units to 2 deci. Places

    ReplyDelete
  103. Question 8.
    ∫(2x + 3 cos x) dx
    2x^2/2 – 3 sin x + c {where c is a constant}
    x^2 – 3 sin x + c
    For bounds 90 and 60
    [(90)^2 – 3 sin90] – [(60)^2 – 3 sin60]
    8097 – 3597.40
    4499.6 units to 1 deci. Place

    ReplyDelete
  104. for ques 5

    y=2x^4+4/x^2+x dx
    y=2x^4+4x^-2+x dx
    integral=2x^5/5+4x^-1+x^2/2

    ReplyDelete
  105. 6.
    Integrating w.r.t. x
    2 x ^2( 2x + 3 )

    4x^3 + 6x^2
    y = 4x^4/4 + 6x^3/3 + c
    y = x^4 + 2x^3 +c

    ReplyDelete
  106. (3)
    Find dy/dx at x = ñ/8 if y = 6 x^ 2 + 2 sin x
    dy/dx = 12x^2 + 2cosx


    x = ñ/8
    dy/dx = 12( ñ/8)^2 + 2cos( ñ/8)
    dy/dx = 6(ñ/8) + 2cos( ñ/8)

    ReplyDelete